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Attack on LFSR Based Combination Generators 
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Abstract - In this paper we discuss the working & implementation of Linear Feedback Shift Registers (LFSRs) in detail and implement the Siegenthaler’s 
correlation attack on a different combination generator with four LFSRs and a nonlinear Boolean function with some defined correlation property. In 
another section, a correlation between some linear combination of input and output variables to the combining function is determined. The determined 
correlation is also used in extraction of related information about the correlated input variables. In the simpler version, we assume a correlation implies 
that the output is equal to one of the input variables with a probability ‘p’ deviating by a significant amount from 0.5 that is p>0.5 or p<0.5. In the phase-1 
of the correlation attack, the occurrence probability of each LFSR output state in the final key-stream output is computed. In the phase-2; a decision 
mechanism is obtained by observing the fact, a significant deviation of occurrence probability from 0.5 makes the LFSR prone to the correlation attack; 
whereas a close proximity of occurrence probability to 0.5 that is p≈0.5 makes an LFSR immune against the correlation attack. The correlation attack 
implementation is possible only on those LFSRs for which there is a significant correlation between its output state and the output of the combining 
Boolean function. The deviation will be exploited to retrieve the initial states of the LFSRs which are considered as the secret keys of the crypto-
algorithm by counting the number of coincidences between the key-stream and all possible shifts of the output sequence of the LFSRs under 
consideration until this number agrees with the correlation probability. 

Keywords - Correlation Attack, Correlation Probability, Cryptographically Weak System, Geffe Generator, Kerckhoffs’s Principle, LFSR, LFSR Based 
Combination Generator.  
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1    INTRODUCTION  

Correlation attacks are a class of known plaintext attacks 

which were first proposed on Geffe Generator in 1984 by   

T. Siegenthaler for breaking a specific class of stream 

ciphers known as combination generators. In a combination 

generator the key stream is generated  by combining the 

output of several linear feedback shift registers (LFSRs) 

using a Boolean function.  

Correlation attacks exploit a statistical weakness that 

arises from an inappropriate choice of the Boolean function. 

As per the Kerckhoffs’s principle (1883) in Cryptography, 

the security of a cryptosystem should  depend solely on the 

secrecy of the key and the private randomizer. 

A cryptosystem should  be secure even if everything about 

the system, except the secret key, is public knowledge. 

Therefore, the details of the cryptosystem is considered  to 

be known to the attacker except for the secret key. Hence in 

any cryptanalytic attack on a generator, the aim of the 

attacker is to retrieve the secret key by using the details of 

the generator and also some portion of the key stream in 

some cases (known plaintext attack scenario). 

                                                                  

 

LFSRs are the basic components of many running-key 

generators for stream cipher applications, because they are 

appropriate to hardware implementation and they produce 

sequences with good statistical properties. An LFSR can 

produce a sequence of large period  if the feedback 

polynomial is chosen appropriately. In the next section, we 

have described with definition how LFSR is implemented . 

         

 2    LFSR AND ITS IMPLEMENTATION 

2.1  Linear Feedback Shift Registers (LFSRs)  

An LFSR is a well-chosen feedback function which can 

produce a sequence of bits which appears random and  

which has a very long cycle. Applications of LFSRs include 

generating pseudo-random numbers, pseudo-noise 

sequences, fast d igital counters, and whitening sequences.  

Definition: A linear feedback shift register (LFSR) of length 

L consists of L stages (or delay elements) numbered  

0,1,...,L−1, each capable of storing one bit and having one 

input and  one output; and a clock which controls the 

movement of data.  

Functioning of an LFSR: During each unit of time the 

following operations are performed: 
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 (i) the content of stage 0 is output and forms part of the 

output sequence; 

 (ii) the content of stage i is moved to stage i−1 for each i,     
1 ≤ i ≤ L−1; and  

 (iii) the new content of stage L−1 is the feedback bit sj 

which is calculated  by adding together modulo 2 the 

previous contents of a fixed subset of stages 0,1,...,L−1, 

which is determined by the feedback polynomial. 

   

                                   

 

 

                    Fig1. Diagram of a 4-stage LFSR 

2.2  Implementation of LFSR in C++ 

We have implemented  the functioning of an LFSR in C++. 

The developed code (namely, generalizing_lfsr.cpp) works 

for an arbitrary length of the LFSR. It asks for input as the 

length, the feedback polynomial & initial state of the LFSR 

from the user. It then describes the LFSR states upto a stage 

when the initial state given by the user is re-obtained  & 

thus gives the period  of the LFSR. The maximum period  of 

an LFSR of same length is also mentioned with the output 

which is given by: 2
L
 - 1 , where L is the length of the LFSR.                                              

The following is the online link for the developed code; 

namely generalizing_lfsr.cpp uploaded in a repository on 

GitHub.com :     

https:/ / github.com/ ramanpreet1993/ generalizing_lfsr/ blo

b/ master/ generalizing_lfsr.cpp     

Given below are the snapshots of two test runs of this code 

with LFSR lengths 4 and  5 respectively. The feedback 

polynomials are chosen such that the 4-stage LFSR attains 

its maximum period  i.e., 15, while the 5-stage LFSR is of 

period  21 (i.e., less than the maximum period  31). 

                                  TEST RUN - 1        

          Length of LFSR: 4    Feedback Polynomial  : 1+x+x
4
 

                   

 

       Fig2. State-wise description of LFSR having length of 4. 

                                        TEST RUN - 2 

      Length of LFSR  :  5       Feedback Polynomial  : 1+x
4
+x

5 

                    

 

      Fig3.  State-wise description of LFSR having length of 5. 

3    LFSR  BASED COMBINATION GENERATOR  

& ITS IMPLEMENTATION 

LFSRs give large period  and have very good statistical 

properties. But their linear complexity is very low. Higher 

linear complexity is achieved by combining several LFSRs 

with a non-linear Boolean function. 

3.1  Combination Generator based on LFSRs  

A system where outputs of several individual LFSR units 

are involved and combined together as the inputs to a non -
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linear Boolean function ‘F’ to u ltimately generate the final 

key stream bit ‘K’ is known as an LFSR based combination 

generator. 

The d iagram of a Combination generator with n LFSRs is 

depicted  in Fig4. 

                                                 

 

Fig4. Diagram of a Non-linear Combination Generator w ith 

n LFSRs 

There are many LFSR based  combination generators & one 

such is GEFFE GENERATOR, which is described as follows: 

3.2   GEFFE GENERATOR:  

It consists of three maximum -length LFSRs whose lengths 

are: L
1
, L

2
, L

3
 which are pairwise relatively prime, with 

nonlinear- combining function as: 

 f (x
1
, x

2
, x

3
)=x

1
.x

2
 ⊕ (1 ⊕ x

2
).x

3
 = x

1
.x

2
 ⊕ x

2
.x

3
 ⊕ x

3 

The key stream generated  has period  )12( 1 L

)12( 2 L

)12( 3 L

and linear complexity; L = L
1
*L

2
 + L

2
*L

3
 + L

3
.                                                     

 

                              Fig5. Diagram of  Geffe Generator 

Despite of having large period  and high linear complexity, 

the geffe generator is observed to have some serious 

cryptographic weakness which is described below: 

Let x
1
(t), x

2
(t), x

3
(t) & z(t) denote the t

th
 output bits of LFSRs 

1, 2 & 3 & key stream at time ‘t’ respectively. 

We know that z=x
1
*x

2
 ⊕ x

2
*x

3
 ⊕ x

3  

P(z(t)=x
1
(t)) = P(x

2
(t) = 1) + P(x

2
(t) = 0)· P(x

3
(t)=x

1
(t)) 

                     =0.5+0.5*0.5=0.75 

P(z(t)=x
2
(t)) = P(x

1
(t)! = x

3
(t)) * P(x

3
(t) =0) 

                     =P(x
1
(t) = 1) =0.5 

P(z(t)=x
3
(t)) = P(x

2
(t) = 1) +P(x

1
(t) = 1)· P(x

2
(t)=x

3
(t)) 

                      =0.5+0.5*0.5=0.75 

It can be seen from the derived probabilities that the 

information about the initial states of LFSR1 & LFSR3 leaks 

into the output sequence as the occurrence p robability of 

the two LFSR states in the output sequence deviates from 

0.5. Such a system is said  to be cryptographically weak and  

is prone to correlation attack. 

4 CORRELATION ATTACK ON COMBINATION  

GENERATORS  

Correlation attacks are possible on combination generators 

when there is a significant correlation between the output 

state of one individual LFSR and the output of the 

combining Boolean function. Suppose that n maximum -

length LFSRs R
1
, R

2
, . . . , R

n
 of lengths L

1
, L

2
, . . . , L

n
 are 

employed in a nonlinear combination generator. As per the 

assumptions of Kerckhoffs’s principle, if the feedback 

polynomials of the LFSRs and the combining function f are 

known, then the number of d ifferent keys of the generator 

that is, total no. of possible in itial states (Initial state of an 

LFSR is considered  a secret key) will be 

                                                                             





n

i

L
i

1

)12(  

Let us suppose that there is a correlation between the key 

stream and the output sequence of R
1
, with correlation 

probability p > 0.5. If a sufficiently long segment of the key 

stream is known (e.g., as is possible under a known -

plaintext attack on a binary additive stream cipher), the 
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initial state of R
1
 can be deduced by counting the number of 

coincidences between the key stream and all possible shifts 

of the output sequence of R
1
, until this number agrees with 

the correlation probability p. Under these conditions, 

finding the initial state of R
1
 will take at most )12( 1 L

 

trials. In the case where there is a correlation between the 

key stream and the output sequences of each of R
1
, R

2
,...., R

n
, 

the (secret) initial state of each LFSR can be determined 

independently in a total of about 

                                                                                                     





n

i

L
i

1

)12(  

trials. This number is far smaller than the total number of 

d ifferent keys. In a similar manner, correlations between the 

output sequences of particular subsets of the LFSRs and the 

key stream can be exploited . 

5    DESCRIPTION OF THE LFSR BASED COMBINATION   

GENERATOR ON WHICH WE WILL BE IMPLEMENTING 

THE CORRELATION ATTACK: 

The complete description of the generator with input and 

output details of C++ code is given as follows:                              

    No. of LFSRs = 4 

 Length of LFSR1  l
1
 = 7 

 Length of LFSR2  l
2
 = 9 

 Length of LFSR3  l
3
 = 11 

 Length of LFSR4  l
4
 =  13 

                Feedback Polynomials: 

 For LFSR1 of Degree 7: 1+x+x
7
 

 For LFSR2 of Degree 9: 1+x
4
+x

9
 

 For LFSR3 of Degree 11: 1+x
2
+x

11
 

 For LFSR4 of Degree 13: 1+x+x
3
+x

4
+x

13
 

All the four polynomials are chosen to be primitive so that 

the respective LFSRs generate maximum length sequences. 

 The non-linear function f which is to be implemented  is: 

 f=1 ⊕ (x
1
*x

2
*x

3
) ⊕ (x

1
*x

3
) ⊕ (x

1
*x

4
) ⊕ (x

3
*x

4
) ⊕ x

1
 ⊕ x

4
 ⊕ x

2
  ⊕  x

3 

We have to generate key sequence for t=10,000 clock cycles.  

The following is the figure of the LFSR based combination 

generator on which we will be applying the correlation 

attack by first evaluating the occurrence probabilities of the 

state of every individual LFSR namely s
t

1
, s

t

2
, s

t

3
 & s

t

4
 into the 

final key stream  output bit z
t
 & exploiting the information 

based on the deviation of occurrence probabilities from 0.5 

as per the Kerckhoffs’s principle, correlation attack is 

applied  on it. 

                    

 

Fig6. Combination Generator comprising of 4 LFSRs along 

with the non-linear Boolean function ‘f’ on which 

Correlation attack will be implemented . 

Input : The input to the given C++ code is read  from inp.txt 

data file which contains the no. of LFSRs, length & initial 

state of each LFSR(considered  as the secret key here) which 

would  be derived later on exploiting the information given 

by the correlation attack and no. of key stream bits to be 

generated  is as given below: 

4 

7 

1 0 0 1 0 1 0 

9 

1 1 1 0 0 1 0 0 1 

11 

1 0 0 1 1 0 0 0 1 0 1 

13 

0 1 0 0 0 1 1 0 0 1 1 1 1  

10000 
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The following is the online link for the developed code; 

namely finding_occurence_probability.cpp uploaded in a 

repository on GitHub.com :     

https:/ / github.com/ ramanpreet1993/ finding_occurence_p

robability.cpp/ blob/ master/ finding_occurence_probability.

cpp  

The C++ code (finding_occurrence_probability.cpp) for the 

combination generator written above computes the 

occurrence probability of each LFSR state in the output 

sequence (and  the no. of LFSR bits matched  with 10000 key 

stream bits). It also computes the period  of each LFSR. 

Apart from this, 5 output data files namely: lfsr_seq1.txt, 

lfsr_seq2.txt, lfsr_seq3.txt, lfsr_seq4.txt & key_seq.txt, each 

containing 10000 bits are also generated . Below is the 

output so generated .                                

                            

 

Fig7. Depiction of the occurrence probability of the state of 

every individual LFSR in the final key stream output bit & 

the period  of every individual LFSR. 

OBSERVATION: 

Based on the output of the program,we observe that the 

occurrence probabilities of LFSRs 2 & 4 in the output 

sequence are 0.75 and 0.63 respectively i.e., these deviate 

from 0.5 significantly, so they become cryptographically 

weak & hence, they are prone to correlation attack,therefore 

their initial states (secret key of our cryptoalgorithm) will 

be determined by the correlation attack; whereas the 

occurrence probabilities of LFSRs 1 & 3 in the output 

sequence are 0.51 & 0.50, i.e., no significant deviation from  

0.5; hence they are immune from the correlation attack, 

therefore their initial states will be determined by the 

exhaustive search. Therefore, we will now implement 

correlation attack on the above-mentioned combination 

generator to determine its complete initial state (secret key) 

which is not known to the attacker. 

6  IMPLEMENTATION OF CORRELATION ATTACK ON 

COMBINATION GENERATOR  

Following the above-mentioned approach, we have 

implemented  the correlation attack on the combination 

generator as described in Section ‘5’ in C++ programming 

language. As the correlation probabilities of outputs of 

LFSR-2 & LFSR-4 with the generator output (i.e., the key 

sequence) are 0.75 and 0.63 respectively which are deviated  

from 0.5, this deviation w ill be exploited  to retrieve the 

intial states of the two LFSRs. As the correlation 

probabilities in case of other two LFSRs LFSR-1 & LFSR-3 

are nearly equal to 0.5, the initial states of these two LFSRs 

will be determined using exhaustive search. So the 

complexity of the correlation attack in this case would  be  

)12( 2 L

 + )12( 4 L

 + )12( 1 L

)12( 3 L

= )12( 9   + 

)12( 13   + )12(
7  )12( 11  ≈ 

18
2 . 

It may be noted  that the complexity of the brute force attack 

is  

)12(
7  )12( 9  )12( 11  )12( 13  ≈

131197
2


= 

40
2  

The input and  output details of the program find_lfsr.cpp 

are given below: 

INPUT:  

Following parameters, considered  to be available with the 

intruder, are taken as input to the C++ program:  

 Size & Feedback Polynomials of the 4 LFSRs 

 Boolean function  

 Correlation Probabilities 

 Key stream (of fixed  length) 

The first three parameters are hardcoded in the program. 

The key stream of length 350 bits only from the data file 

key_seq.txt generated  in Section 5 is used  for the attack 

(though there are 10000 bits in this file.) 

The following is the online link for the developed code; 

namely find_lfsr.cpp uploaded in a repository on 

GitHub.com :     

https:/ / github.com/ ramanpreet1993/ find_lfsr.cpp/ blob/

master/ find_lfsr.cpp  

The above written C++ code determines and  prints the 

possible initial states of LFSR-2 & LFSR-4 & also d isplays 
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their occurrence probabilities in the output sequence. Then 

it outputs the initial states of LFSR-1 & LFSR-3. 

Thus the complete initial state of the combination generator  

is found and hence the correlation attack is successfu lly 

implemented!!!! 

Following snapshot shows the output file corr_lfsr2.txt 

describing the derived initial states of all four LFSRs. It may 

be noted  that these initial states are same as provided in the 

input file inp.txt . 

                

 

Fig8. Depiction of the derivation of the initial state of every 

individual LFSR by correlation attack for LFSRs-2 & 4 & by 

exhaustive search for LFSRs-1 & 3 due to immunity against 

correlation attack. 

7   CONCLUSION 

Firstly, we have studied  in detail that how a Linear 

Feedback Shift Register (LFSR) works; we have then 

successfu lly implemented  its working in C++ programming 

language. Our developed code works for an arbitrary 

length of the LFSR. It asks for input as the length, the 

feedback polynomial & initial state of the LFSR from the 

user. It then describes the LFSR states up  to a stage when 

the initial state given by the user is re-obtained & thus gives 

the period  of the LFSR. We have tested  our developed code 

for LFSRs of lengths 4 and 5 respectively. The feedback 

polynomials are chosen such that the 4-stage LFSR attains 

its maximum period  of 2
L
 -1 , i.e., 15, while the 5-stage LFSR 

is of period  21 (i.e., less than the maximum period  31). 

  Secondly, we have studied  and implemented  the 

correlation attack on a combination generator with 4 LFSRs 

(of lengths 7, 9, 11 and 13). The complete initial state of the 

generator was recovered  using the correlation attack in 

approximately 2
18

 trials, whereas the brute force complexity 

to recover the initial state would  have been around 2
40

. The 

exact complexity of the correlation attack depends on the 

choice of combining Boolean function. A combination 

generator can be made immune to the correlation attack by 

using a su itable Boolean function whose output is not 

correlated  to any of its input bits. Such Boolean functions 

are known as correlation immune functions.  
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