

 IJSER © 2017

 http://www.ijser.org

The Study and Implementation of Correlation
Attack on LFSR Based Combination Generators
 Raman Preet Singh Khera and L N Das

Abstract - In this paper we discuss the working & implementation of Linear Feedback Shift Registers (LFSRs) in detail and implement the Siegenthaler’s
correlation attack on a different combination generator with four LFSRs and a nonlinear Boolean function with some defined correlation property. In
another section, a correlation between some linear combination of input and output variables to the combining function is determined. The determined
correlation is also used in extraction of related information about the correlated input variables. In the simpler version, we assume a correlation implies
that the output is equal to one of the input variables with a probability ‘p’ deviating by a significant amount from 0.5 that is p>0.5 or p<0.5. In the phase-1
of the correlation attack, the occurrence probability of each LFSR output state in the final key-stream output is computed. In the phase-2; a decision
mechanism is obtained by observing the fact, a significant deviation of occurrence probability from 0.5 makes the LFSR prone to the correlation attack;
whereas a close proximity of occurrence probability to 0.5 that is p≈0.5 makes an LFSR immune against the correlation attack. The correlation attack
implementation is possible only on those LFSRs for which there is a significant correlation between its output state and the output of the combining
Boolean function. The deviation will be exploited to retrieve the initial states of the LFSRs which are considered as the secret keys of the crypto-
algorithm by counting the number of coincidences between the key-stream and all possible shifts of the output sequence of the LFSRs under
consideration until this number agrees with the correlation probability.

Keywords - Correlation Attack, Correlation Probability, Cryptographically Weak System, Geffe Generator, Kerckhoffs’s Principle, LFSR, LFSR Based
Combination Generator.

——————————  ——————————

1 INTRODUCTION

Correlation attacks are a class of known plaintext attacks

which were first proposed on Geffe Generator in 1984 by

T. Siegenthaler for breaking a specific class of stream

ciphers known as combination generators. In a combination

generator the key stream is generated by combining the

output of several linear feedback shift registers (LFSRs)

using a Boolean function.

Correlation attacks exploit a statistical weakness that

arises from an inappropriate choice of the Boolean function.

As per the Kerckhoffs’s principle (1883) in Cryptography,

the security of a cryptosystem should depend solely on the

secrecy of the key and the private randomizer.

A cryptosystem should be secure even if everything about

the system, except the secret key, is public knowledge.

Therefore, the details of the cryptosystem is considered to

be known to the attacker except for the secret key. Hence in

any cryptanalytic attack on a generator, the aim of the

attacker is to retrieve the secret key by using the details of

the generator and also some portion of the key stream in

some cases (known plaintext attack scenario).

LFSRs are the basic components of many running-key

generators for stream cipher applications, because they are

appropriate to hardware implementation and they produce

sequences with good statistical properties. An LFSR can

produce a sequence of large period if the feedback

polynomial is chosen appropriately. In the next section, we

have described with definition how LFSR is implemented .

 2 LFSR AND ITS IMPLEMENTATION

2.1 Linear Feedback Shift Registers (LFSRs)

An LFSR is a well-chosen feedback function which can

produce a sequence of bits which appears random and

which has a very long cycle. Applications of LFSRs include

generating pseudo-random numbers, pseudo-noise

sequences, fast d igital counters, and whitening sequences.

Definition: A linear feedback shift register (LFSR) of length

L consists of L stages (or delay elements) numbered

0,1,...,L−1, each capable of storing one bit and having one

input and one output; and a clock which controls the

movement of data.

Functioning of an LFSR: During each unit of time the

following operations are performed:

————————————————

 Raman Preet Singh Khera, B.Tech., Mathematics and Computing
Engineering, Department of Applied Mathematics, Delhi
Technological University, Delhi-110042, Ind ia , PH -+91-9899680688.
E-mail: rpsk786@gmail.com

 Laxminarayan Das, Professor, Department of Applied Mathematics,
Delhi Technological University, Delhi-110042, Ind ia,
PH-+91-8826570638 , E-mail: lndas@dce.ac.in

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017
ISSN 2229-5518 2414

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Stream_ciphers
https://en.wikipedia.org/wiki/Stream_ciphers
https://en.wikipedia.org/wiki/Linear_feedback_shift_register
https://en.wikipedia.org/wiki/Boolean_function
https://en.wikipedia.org/wiki/Cryptosystem
https://en.wikipedia.org/wiki/Cryptographic_key

 IJSER © 2017

 http://www.ijser.org

 (i) the content of stage 0 is output and forms part of the

output sequence;

 (ii) the content of stage i is moved to stage i−1 for each i,
1 ≤ i ≤ L−1; and

 (iii) the new content of stage L−1 is the feedback bit sj

which is calculated by adding together modulo 2 the

previous contents of a fixed subset of stages 0,1,...,L−1,

which is determined by the feedback polynomial.

 Fig1. Diagram of a 4-stage LFSR

2.2 Implementation of LFSR in C++

We have implemented the functioning of an LFSR in C++.

The developed code (namely, generalizing_lfsr.cpp) works

for an arbitrary length of the LFSR. It asks for input as the

length, the feedback polynomial & initial state of the LFSR

from the user. It then describes the LFSR states upto a stage

when the initial state given by the user is re-obtained &

thus gives the period of the LFSR. The maximum period of

an LFSR of same length is also mentioned with the output

which is given by: 2
L
 - 1 , where L is the length of the LFSR.

The following is the online link for the developed code;

namely generalizing_lfsr.cpp uploaded in a repository on

GitHub.com :

https:/ / github.com/ ramanpreet1993/ generalizing_lfsr/ blo

b/ master/ generalizing_lfsr.cpp

Given below are the snapshots of two test runs of this code

with LFSR lengths 4 and 5 respectively. The feedback

polynomials are chosen such that the 4-stage LFSR attains

its maximum period i.e., 15, while the 5-stage LFSR is of

period 21 (i.e., less than the maximum period 31).

 TEST RUN - 1

 Length of LFSR: 4 Feedback Polynomial : 1+x+x
4

 Fig2. State-wise description of LFSR having length of 4.

 TEST RUN - 2

 Length of LFSR : 5 Feedback Polynomial : 1+x
4
+x

5

 Fig3. State-wise description of LFSR having length of 5.

3 LFSR BASED COMBINATION GENERATOR

& ITS IMPLEMENTATION

LFSRs give large period and have very good statistical

properties. But their linear complexity is very low. Higher

linear complexity is achieved by combining several LFSRs

with a non-linear Boolean function.

3.1 Combination Generator based on LFSRs

A system where outputs of several individual LFSR units

are involved and combined together as the inputs to a non -

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017
ISSN 2229-5518 2415

IJSER

http://www.ijser.org/
https://github.com/ramanpreet1993/generalizing_lfsr/blob/master/generalizing_lfsr.cpp
https://github.com/ramanpreet1993/generalizing_lfsr/blob/master/generalizing_lfsr.cpp

 IJSER © 2017

 http://www.ijser.org

linear Boolean function ‘F’ to u ltimately generate the final

key stream bit ‘K’ is known as an LFSR based combination

generator.

The d iagram of a Combination generator with n LFSRs is

depicted in Fig4.

Fig4. Diagram of a Non-linear Combination Generator w ith

n LFSRs

There are many LFSR based combination generators & one

such is GEFFE GENERATOR, which is described as follows:

3.2 GEFFE GENERATOR:

It consists of three maximum -length LFSRs whose lengths

are: L
1
, L

2
, L

3
 which are pairwise relatively prime, with

nonlinear- combining function as:

 f (x
1
, x

2
, x

3
)=x

1
.x

2
 ⊕ (1 ⊕ x

2
).x

3
 = x

1
.x

2
 ⊕ x

2
.x

3
 ⊕ x

3

The key stream generated has period)12(1 L

)12(2 L

)12(3 L

and linear complexity; L = L
1
*L

2
 + L

2
*L

3
 + L

3
.

 Fig5. Diagram of Geffe Generator

Despite of having large period and high linear complexity,

the geffe generator is observed to have some serious

cryptographic weakness which is described below:

Let x
1
(t), x

2
(t), x

3
(t) & z(t) denote the t

th
 output bits of LFSRs

1, 2 & 3 & key stream at time ‘t’ respectively.

We know that z=x
1
*x

2
 ⊕ x

2
*x

3
 ⊕ x

3

P(z(t)=x
1
(t)) = P(x

2
(t) = 1) + P(x

2
(t) = 0)· P(x

3
(t)=x

1
(t))

 =0.5+0.5*0.5=0.75

P(z(t)=x
2
(t)) = P(x

1
(t)! = x

3
(t)) * P(x

3
(t) =0)

 =P(x
1
(t) = 1) =0.5

P(z(t)=x
3
(t)) = P(x

2
(t) = 1) +P(x

1
(t) = 1)· P(x

2
(t)=x

3
(t))

 =0.5+0.5*0.5=0.75

It can be seen from the derived probabilities that the

information about the initial states of LFSR1 & LFSR3 leaks

into the output sequence as the occurrence p robability of

the two LFSR states in the output sequence deviates from

0.5. Such a system is said to be cryptographically weak and

is prone to correlation attack.

4 CORRELATION ATTACK ON COMBINATION

GENERATORS

Correlation attacks are possible on combination generators

when there is a significant correlation between the output

state of one individual LFSR and the output of the

combining Boolean function. Suppose that n maximum -

length LFSRs R
1
, R

2
, . . . , R

n
 of lengths L

1
, L

2
, . . . , L

n
 are

employed in a nonlinear combination generator. As per the

assumptions of Kerckhoffs’s principle, if the feedback

polynomials of the LFSRs and the combining function f are

known, then the number of d ifferent keys of the generator

that is, total no. of possible in itial states (Initial state of an

LFSR is considered a secret key) will be





n

i

L
i

1

)12(

Let us suppose that there is a correlation between the key

stream and the output sequence of R
1
, with correlation

probability p > 0.5. If a sufficiently long segment of the key

stream is known (e.g., as is possible under a known -

plaintext attack on a binary additive stream cipher), the

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017
ISSN 2229-5518 2416

IJSER

http://www.ijser.org/

 IJSER © 2017

 http://www.ijser.org

initial state of R
1
 can be deduced by counting the number of

coincidences between the key stream and all possible shifts

of the output sequence of R
1
, until this number agrees with

the correlation probability p. Under these conditions,

finding the initial state of R
1
 will take at most)12(1 L

trials. In the case where there is a correlation between the

key stream and the output sequences of each of R
1
, R

2
,...., R

n
,

the (secret) initial state of each LFSR can be determined

independently in a total of about





n

i

L
i

1

)12(

trials. This number is far smaller than the total number of

d ifferent keys. In a similar manner, correlations between the

output sequences of particular subsets of the LFSRs and the

key stream can be exploited .

5 DESCRIPTION OF THE LFSR BASED COMBINATION

GENERATOR ON WHICH WE WILL BE IMPLEMENTING

THE CORRELATION ATTACK:

The complete description of the generator with input and

output details of C++ code is given as follows:

 No. of LFSRs = 4

 Length of LFSR1 l
1
 = 7

 Length of LFSR2 l
2
 = 9

 Length of LFSR3 l
3
 = 11

 Length of LFSR4 l
4
 = 13

 Feedback Polynomials:

 For LFSR1 of Degree 7: 1+x+x
7

 For LFSR2 of Degree 9: 1+x
4
+x

9

 For LFSR3 of Degree 11: 1+x
2
+x

11

 For LFSR4 of Degree 13: 1+x+x
3
+x

4
+x

13

All the four polynomials are chosen to be primitive so that

the respective LFSRs generate maximum length sequences.

 The non-linear function f which is to be implemented is:

 f=1 ⊕ (x
1
*x

2
*x

3
) ⊕ (x

1
*x

3
) ⊕ (x

1
*x

4
) ⊕ (x

3
*x

4
) ⊕ x

1
 ⊕ x

4
 ⊕ x

2
 ⊕ x

3

We have to generate key sequence for t=10,000 clock cycles.

The following is the figure of the LFSR based combination

generator on which we will be applying the correlation

attack by first evaluating the occurrence probabilities of the

state of every individual LFSR namely s
t

1
, s

t

2
, s

t

3
 & s

t

4
 into the

final key stream output bit z
t
 & exploiting the information

based on the deviation of occurrence probabilities from 0.5

as per the Kerckhoffs’s principle, correlation attack is

applied on it.

Fig6. Combination Generator comprising of 4 LFSRs along

with the non-linear Boolean function ‘f’ on which

Correlation attack will be implemented .

Input : The input to the given C++ code is read from inp.txt

data file which contains the no. of LFSRs, length & initial

state of each LFSR(considered as the secret key here) which

would be derived later on exploiting the information given

by the correlation attack and no. of key stream bits to be

generated is as given below:

4

7

1 0 0 1 0 1 0

9

1 1 1 0 0 1 0 0 1

11

1 0 0 1 1 0 0 0 1 0 1

13

0 1 0 0 0 1 1 0 0 1 1 1 1

10000

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017
ISSN 2229-5518 2417

IJSER

http://www.ijser.org/

 IJSER © 2017

 http://www.ijser.org

The following is the online link for the developed code;

namely finding_occurence_probability.cpp uploaded in a

repository on GitHub.com :

https:/ / github.com/ ramanpreet1993/ finding_occurence_p

robability.cpp/ blob/ master/ finding_occurence_probability.

cpp

The C++ code (finding_occurrence_probability.cpp) for the

combination generator written above computes the

occurrence probability of each LFSR state in the output

sequence (and the no. of LFSR bits matched with 10000 key

stream bits). It also computes the period of each LFSR.

Apart from this, 5 output data files namely: lfsr_seq1.txt,

lfsr_seq2.txt, lfsr_seq3.txt, lfsr_seq4.txt & key_seq.txt, each

containing 10000 bits are also generated . Below is the

output so generated .

Fig7. Depiction of the occurrence probability of the state of

every individual LFSR in the final key stream output bit &

the period of every individual LFSR.

OBSERVATION:

Based on the output of the program,we observe that the

occurrence probabilities of LFSRs 2 & 4 in the output

sequence are 0.75 and 0.63 respectively i.e., these deviate

from 0.5 significantly, so they become cryptographically

weak & hence, they are prone to correlation attack,therefore

their initial states (secret key of our cryptoalgorithm) will

be determined by the correlation attack; whereas the

occurrence probabilities of LFSRs 1 & 3 in the output

sequence are 0.51 & 0.50, i.e., no significant deviation from

0.5; hence they are immune from the correlation attack,

therefore their initial states will be determined by the

exhaustive search. Therefore, we will now implement

correlation attack on the above-mentioned combination

generator to determine its complete initial state (secret key)

which is not known to the attacker.

6 IMPLEMENTATION OF CORRELATION ATTACK ON

COMBINATION GENERATOR

Following the above-mentioned approach, we have

implemented the correlation attack on the combination

generator as described in Section ‘5’ in C++ programming

language. As the correlation probabilities of outputs of

LFSR-2 & LFSR-4 with the generator output (i.e., the key

sequence) are 0.75 and 0.63 respectively which are deviated

from 0.5, this deviation w ill be exploited to retrieve the

intial states of the two LFSRs. As the correlation

probabilities in case of other two LFSRs LFSR-1 & LFSR-3

are nearly equal to 0.5, the initial states of these two LFSRs

will be determined using exhaustive search. So the

complexity of the correlation attack in this case would be

)12(2 L

 +)12(4 L

 +)12(1 L

)12(3 L

=)12(9  +

)12(13  +)12(
7 )12(11  ≈

18
2 .

It may be noted that the complexity of the brute force attack

is

)12(
7 )12(9 )12(11 )12(13  ≈

131197
2


=

40
2

The input and output details of the program find_lfsr.cpp

are given below:

INPUT:

Following parameters, considered to be available with the

intruder, are taken as input to the C++ program:

 Size & Feedback Polynomials of the 4 LFSRs

 Boolean function

 Correlation Probabilities

 Key stream (of fixed length)

The first three parameters are hardcoded in the program.

The key stream of length 350 bits only from the data file

key_seq.txt generated in Section 5 is used for the attack

(though there are 10000 bits in this file.)

The following is the online link for the developed code;

namely find_lfsr.cpp uploaded in a repository on

GitHub.com :

https:/ / github.com/ ramanpreet1993/ find_lfsr.cpp/ blob/

master/ find_lfsr.cpp

The above written C++ code determines and prints the

possible initial states of LFSR-2 & LFSR-4 & also d isplays

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017
ISSN 2229-5518 2418

IJSER

http://www.ijser.org/
https://github.com/ramanpreet1993/finding_occurence_probability.cpp/blob/master/finding_occurence_probability.cpp
https://github.com/ramanpreet1993/finding_occurence_probability.cpp/blob/master/finding_occurence_probability.cpp
https://github.com/ramanpreet1993/finding_occurence_probability.cpp/blob/master/finding_occurence_probability.cpp
https://github.com/ramanpreet1993/find_lfsr.cpp/blob/master/find_lfsr.cpp
https://github.com/ramanpreet1993/find_lfsr.cpp/blob/master/find_lfsr.cpp

 IJSER © 2017

 http://www.ijser.org

their occurrence probabilities in the output sequence. Then

it outputs the initial states of LFSR-1 & LFSR-3.

Thus the complete initial state of the combination generator

is found and hence the correlation attack is successfu lly

implemented!!!!

Following snapshot shows the output file corr_lfsr2.txt

describing the derived initial states of all four LFSRs. It may

be noted that these initial states are same as provided in the

input file inp.txt .

Fig8. Depiction of the derivation of the initial state of every

individual LFSR by correlation attack for LFSRs-2 & 4 & by

exhaustive search for LFSRs-1 & 3 due to immunity against

correlation attack.

7 CONCLUSION

Firstly, we have studied in detail that how a Linear

Feedback Shift Register (LFSR) works; we have then

successfu lly implemented its working in C++ programming

language. Our developed code works for an arbitrary

length of the LFSR. It asks for input as the length, the

feedback polynomial & initial state of the LFSR from the

user. It then describes the LFSR states up to a stage when

the initial state given by the user is re-obtained & thus gives

the period of the LFSR. We have tested our developed code

for LFSRs of lengths 4 and 5 respectively. The feedback

polynomials are chosen such that the 4-stage LFSR attains

its maximum period of 2
L
 -1 , i.e., 15, while the 5-stage LFSR

is of period 21 (i.e., less than the maximum period 31).

 Secondly, we have studied and implemented the

correlation attack on a combination generator with 4 LFSRs

(of lengths 7, 9, 11 and 13). The complete initial state of the

generator was recovered using the correlation attack in

approximately 2
18

 trials, whereas the brute force complexity

to recover the initial state would have been around 2
40

. The

exact complexity of the correlation attack depends on the

choice of combining Boolean function. A combination

generator can be made immune to the correlation attack by

using a su itable Boolean function whose output is not

correlated to any of its input bits. Such Boolean functions

are known as correlation immune functions.

8 REFERENCES

[1] A. Menezes, P.van Oorschot and S. Vanstone, Handbook

of Applied Cryptography, August, 1996, Chapter-6, Pages:

195-197,203- 208.

[2] T. Siegenthaler, Decryp ting a Class of Stream Ciphers

using Ciphertext Only, Institu te for Communication

Technology, Federal Institu te of Technology in IEEE

Transactions on Computers, Volume 34 Issue 1, January

1985, Pages 81-85, IEEE Computer Society Washington, DC,

USA.

[3] T. Siegenthaler, Correlation-Immunity of Nonlinear

Combining Functions for Cryptographic Applications,

Published in: IEEE Transactions on Information Theory,

Vol.30, Issue: 5, September 1984 , Pages: 776-780.

[4] T. Siegenthaler, Correlation attacks on certain stream

ciphers with non-linear generators, presented at IEEE Int.

Symp. Information Theory, Saint Jovite, Canada, Sept.

26-29, 1983.

[5] J.O. Bruer, on nonlinear combinations of linear shift

register sequences, Linkoeping University Sweden, Internal

report March 83, presented at IEEE Int. Symp. Information

Theory, Les Arc France, June 21-25, 1982.

[6] Thomas Johansson, Theoretical Analysis of a Correlation

Attack Based on Convolutional Codes Member, IEEE, and

Fredrik Jönsson, Student Member, IEEE Transactions on

Information Theory , Vol.48, No.8, August 2002.

[7] J. Dj. Golic´, M. Salmasizadeh, and E. Dawson, “Fast

correlation attacks on the summ ation generator,”

J. Cryptol., Vol. 13, pp. 245–262, 2000.

[8] W. Meier, and O. Staffelbach, “Fast correlation attacks on

stream ciphers”, Advances in Cryptology- EUROCRYPT-88,

Lecture Notes Computer Science, Vol. 330, Springer- Verlag

1988, pp.301-314.

[9] W. Meier, and O. Staffelbach, “Fast correlation attacks on

stream ciphers”, Journal of Cryptology, Vol. 1, 1989, pp.159-

176.

[10]https:/ / yorkporc.wordpress.com/ 2011/ 04/ 22/ input-

output-correlations-in-desfirst-look-at-lfsrand-non-linear-

combiners/

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017
ISSN 2229-5518 2419

IJSER

http://www.ijser.org/
https://yorkporc.wordpress.com/2011/04/22/input-output-correlations-in-desfirst-look-at-lfsrand-non-linear-combiners/
https://yorkporc.wordpress.com/2011/04/22/input-output-correlations-in-desfirst-look-at-lfsrand-non-linear-combiners/
https://yorkporc.wordpress.com/2011/04/22/input-output-correlations-in-desfirst-look-at-lfsrand-non-linear-combiners/

	1 Introduction
	2 LFSR AND ITS IMPLEMENTATION
	3 LFSR BASED COMBINATION GENERATOR & ITS IMPLEMENTATION
	4 Correlation Attack on Combination Generators
	5 Description of the LFSR Based Combination Generator on which we will be implementing the Correlation Attack:
	6 Implementation of Correlation Attack on Combination Generator
	7 CONCLUSION
	8 REFERENCES

